

SONET

By Sadhish Prabhu

Unit II

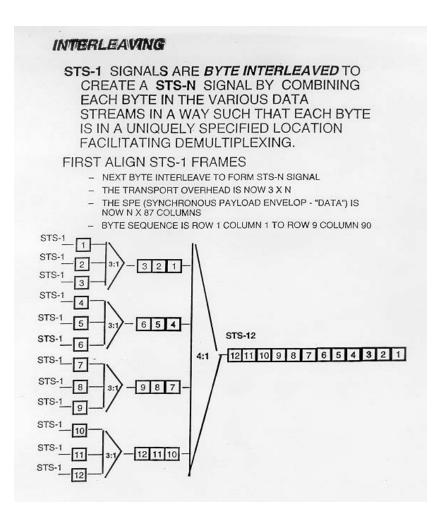
History

- Digital carrier systems
 - The hierarchy of digital signals that the telephone network uses.
 - Trunks and access links organized in DS (digital signal)
 hierarchy
 - Problem: rates are not multiples of each other.
- In the 1980's Bellcore developed the Synchronous Optical Network (SONET) standard.
- Previous efforts include: **ISDN** and **BISDN**.

SONET Overview

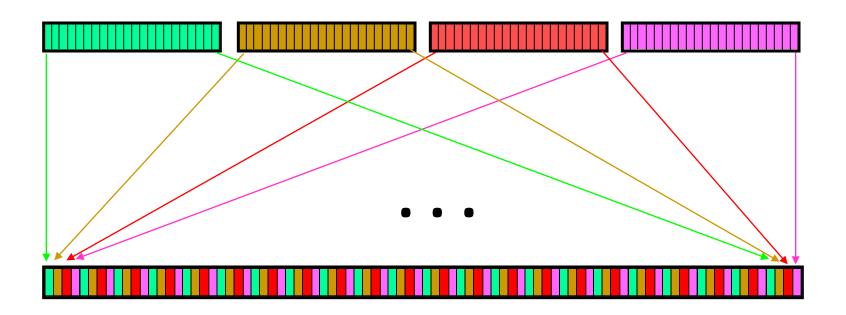
- The SONET specification defines:
 - standard optical signals, which permits the interoperation of equipment from different manufacturers
 - a synchronous frame structure for multiplexing digital traffic
- SONET includes:
 - support for broadband rates
 - base rate approximately 50 Mbps
 - hierarchical family of digital rates
 - defines data rates up to 2.4 Gbps
 - synchronous multiplexing
 - global timing structure at physical layer
 - synchronous implies simpler interface

Features of SONET


- SONET:: encodes bit streams into optical signals propagated over optical fiber. SONET defines a technology for carrying many signals of different capacities through a <u>synchronous</u>, <u>flexible</u>, optical hierarchy.
- A bit-way implementation providing end-to-end transport of bit streams.
- All clocks in the network are locked to a common <u>master</u> <u>clock</u> so that simple TDM can be used.
- Multiplexing done by *byte interleaving*.
- *SONET* is backward compatible to DS-1 and E-1 and forward compatible to ATM cells.
- Demultiplexing is easy.

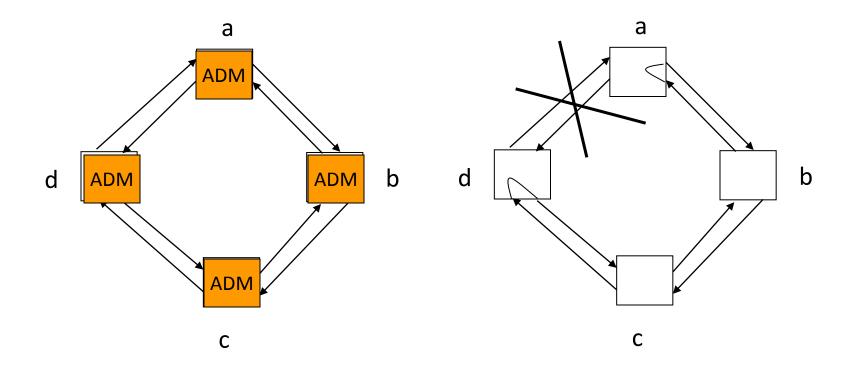
Comparing clocks

- A clock is said to be isochronous (isos=equal, chronos=time) if its *ticks* are equally spaced in time
- 2 clocks are said to be synchronous (syn=same chronos=time) if they tick in time, i.e. have precisely the same frequency
- 2 clocks are said to be plesiochronous (plesio=near chronos=time) if they are nominally in the same frequency but are not *locked*

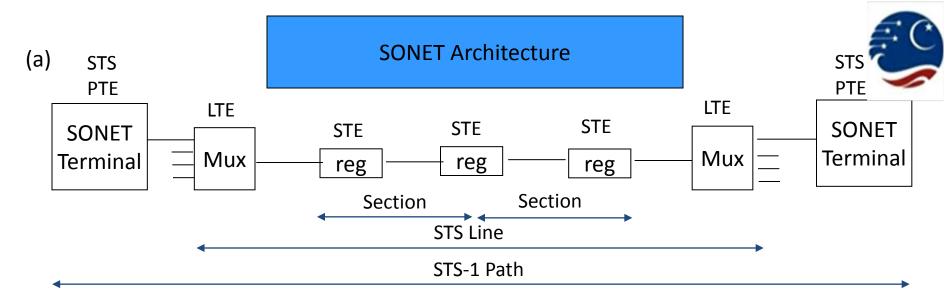


Byte Interleaving

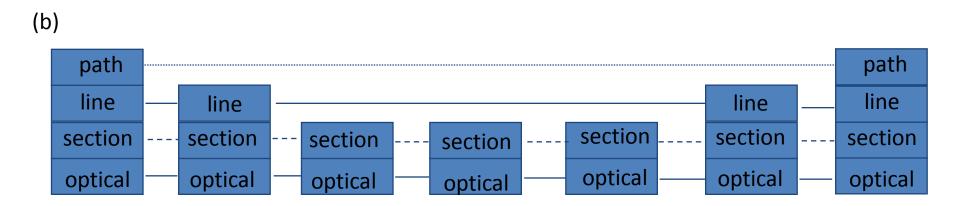
Byte-interleaving



SONET Architecture


- SONET topology can be a mesh, but most often it is a dual ring.
- Standard component of SONET ring is an ADM (Add/Drop Multiplexer)
 - Drop one incoming multiplexed stream and replace it with another stream.
 - Used to make up bi-directional line switching rings.

(a) Dual ring


(b) Loop-around in response to fault

STE: Section Terminating Equipment, e.g. a regenerator

LTE: Line Terminating Equipment, e.g. a STS-1 to STS-3 multiplexer

PTE: Path Terminating Equipment, e.g. an STS-1 multiplexer

Layers

SONET was designed with definite layering concepts

Physical layer – optical fiber (linear or ring)

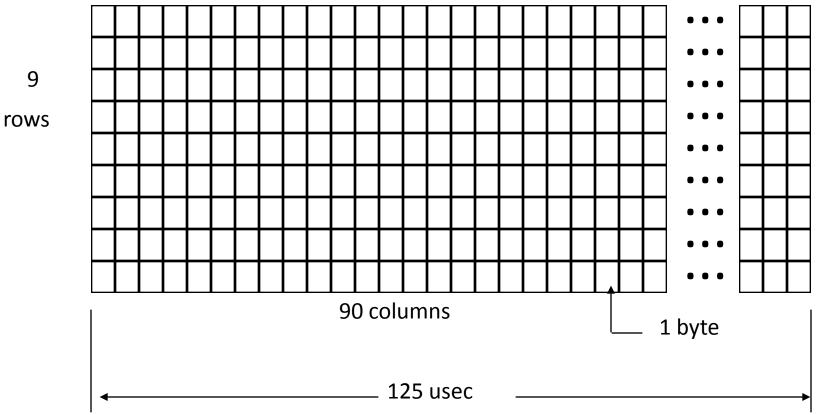
- when exceed fiber reach regenerators
- regenerators are not mere amplifiers,
 regenerators use their own overhead
- fiber between regenerators called section (regenerator section)

Line layer – link between SONET muxes (Add/Drop Multiplexers)

- input and output at this level are Virtual Tributaries (VCs)
- actually 2 layers
 - lower order VC (for low bitrate payloads)
 higher order VC (for high bitrate payloads)

Path layer – end-to-end path of client data (tributaries)

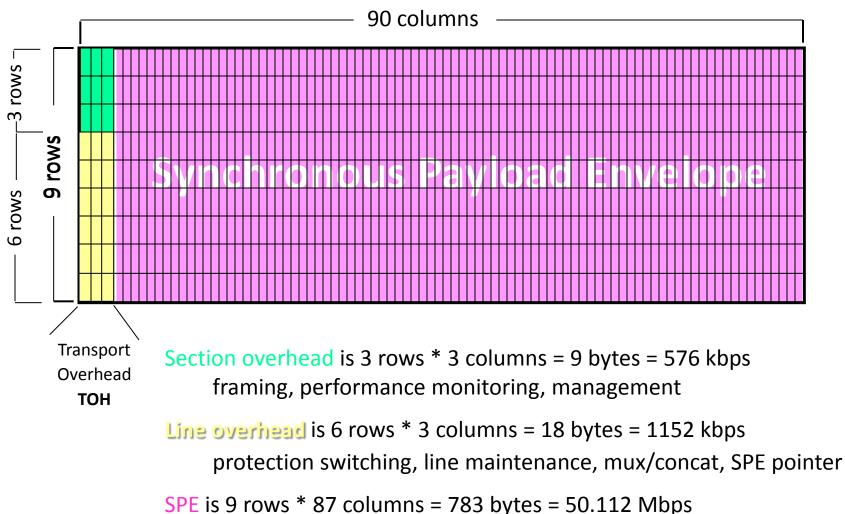
- client data (payload) may be
 - PDH
 - ATM
 - packet data



SONET Framing Structure

- Basic module is STS-1 Synchronous Transport Signal, Level 1
- STS-1 corresponds to 51.84 Mbps
- Each STS-1 frame is 90 columns * 9 rows = 810 bytes
- There are 8000 STS-1 frames per second
- so each byte represents 64 kbps (each column is 576 kbps)

STS-1 Framing Structure



STS-1 Framing

- Bytes are transmitted one row at a time, from left to right
- Note: 1 byte/frame = 64 kbps
- First three columns of STS-1 frame are for section overhead and line overhead
- Remaining 87 columns are for the Synchronous Payload Envelope (SPE)

STS-1 frame structure

SONET Overhead

- Overhead bytes are used by SONET equipment (e.g., switches) for exchange of control and signalling information, and as a low bandwidth data channel
- Three types of overhead bytes
 - section
 - line
 - path

STS-1 Overhead

section overhead

line overhead

A1	A2	JO
B1	E1	F1
D1	D2	D3
H1	H2	H3
B2	K1	K2
D4	D5	D6
D7	D8	D9
D10	D11	D12
S1	MO	E2
	B1 D1 H1 B2 D4 D7 D10	B1 E1 D1 D2 H1 H2 B2 K1 D4 D5 D7 D8 D10 D11

The STS-1 overhead consists of

- 3 rows of section overhead
 - frame sync (A1, A2)
 - section trace (J0)
 - error control (B1)
 - section orderwire (E1)
 - Embedded Operations Channel (Di)
- 6 rows of line overhead
 - pointer and pointer action (Hi)
 - error control (B2)
 - Automatic Protection Switching signaling (Ki)
 - Data Channel (Di)
 - Synchronization Status Message (S1)
 - Far End Block Error (M0)
 - line orderwire (E2)

A1, A2, J0 (section overhead)

- A1, A2 framing bytes
- A1 = 11110110
- A2 = 00101000

SONET/SDH framing always uses equal numbers of A1 and A2 bytes

- J0 regenerator section trace (in early SONET a counter called C1) enables receiver to be sure that the section connection is still OK enables identifying individual STS/STMs after muxing
- JO goes through a 16 byte sequence
- MSBs are JO framing (1000...00)
- Cs are CRC-7 of previous frame
- S are 15 7-bit characters

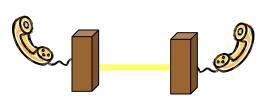
section access point identifier

1	C ₁	C ₂	С ₃	C ₄	C ₅	С ₆	C ₇
0	S	S	S	S	S	S	S
•••							
0	S	S	S	S	S	S	S

B1, E1, F1, D1-3 (section overhead)

B1 – Byte Interleaved Parity-8 byte

even parity of bits of bytes of previous frame after scrambling only 1 BIT-8 for multiplexed STS/STM

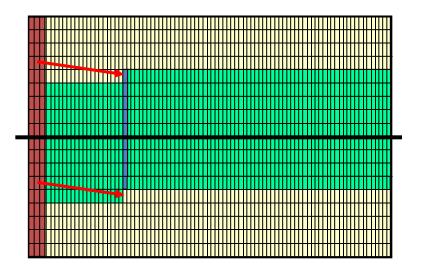

E1 – section orderwire

64 kbps voice link for technicians from regenerator to regenerator

F1 – 64 kbps link for user purposes

D1 + D2 + D3 – 192 kbps messaging channel

used by section termination as Embedded Operations Channel (SONET) or Data Communications Channel (SDH)

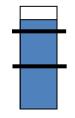


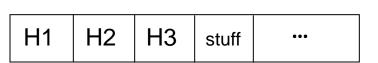
Pointers (line overhead)

In SONET, pointers are considered part of line overhead For STS-1, H1+H2 is the pointer, H3 is the pointer action

H1+H2 indicates the offset (in bytes) from H3 to the SPE

To compensate for clock differences we have *pointer justification* When *negative* justification H3 carries the extra data When *positive* justification byte after H3 is stuffing byte




SONET Justification

If tributary rate is above nominal, negative justification is needed

H1	H2	extra	•••
----	----	-------	-----

If tributary rate is below nominal, positive justification is needed

B2, K1, K2, D4-D12 (line overhead)

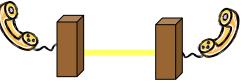
B2 – BIP-8 of line overhead + previous envelope (w/o scrambling) N B2s for muxed STM-N

K1 and K2 are used for Automatic Protection Switching (see later)

D4 – D12 are a 576 Kbps Data Communications Channel between multiplexers usually manufacturer specific

S1, MO, E2 (line overhead)

S1 – Synchronization Status Message


indicates stratum level (unknown, stratum 1, ..., do not use)

M0 – Far End Block Error

indicates number of BIP violations detected

E2 – line orderwire

64 kbps voice link for technicians from line mux to line mux

STS-1 Path overhead

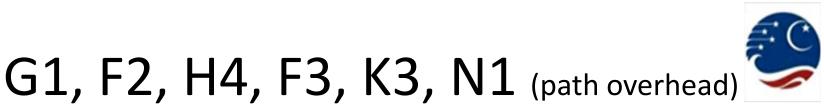
1 column of overhead for path (576 Kbps) POH is responsible for

- path type identification
- path performance monitoring
- status (including of mapped payloads)
- virtual concatenation
- path protection
- trace

J1, B3, C2 (path overhead)

J1 – path trace

enables receiver to be sure that the path connection is still OK


B3 – BIP-8 even bit parity of bytes (without scrambling)

of previous payload

C2 – path signal label

identifies the payload type (examples in table)

C2 (hex)	Payload type	
00	unequipped	
01	nonspecific	
02	LOP (TUG)	
04	E3/T3	
12	E4	
13	ATM	
16	PoS – RFC 1662	
18	LAPS X.85	
1A	10G Ethernet	
1B	GFP	
CF	PoS - RFC1619	

G1 – path status

conveys status and performance back to originator 4 MSBs are path FEBE, 1 bit RDI, 3 unused

F2 and F3 – user specific communications

H4 – used for LOP multiframe sync and VCAT (see later)

K3 (4 MSBs) – path APS

N1 – Tandem Connection Monitoring

Messaging channel for tandem connections

SONET/SDH rates

SONET	SDH	columns	rate
STS-1		90	51.84M
STS-3	STM-1	270	155.52M
STS-12	STM-4	1080	622.080M
STS-48	STM-16	4320	2488.32M
STS-192	STM-64	17280	9953.28M

STS-N has 90N columns STM-M corresponds to STS-N with N = 3M SDH rates increase by factors of 4 each time STS/STM signals can carry PDH tributaries, for example:

- STS-1 can carry 1 T3 or 28 T1s or 1 E3 or 21 E1s
- STM-1 can carry 3 E3s or 63 E1s or 3 T3s or 84 T1s

• Next SDH.....